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Abstract—Designing massively scalable, highly available big 
data systems is an immense challenge for software architects. Big 
data applications require distributed systems design principles to 
create scalable solutions, and the selection and adoption of open 
source and commercial technologies that can provide the 
required quality attributes. In big data systems, the data 
management layer presents unique engineering problems, arising 
from the proliferation of new data models and distributed 
technologies for building scalable, available data stores. 
Architects must consequently compare candidate database 
technology features and select platforms that can satisfy 
application quality and cost requirements. In practice, the 
inevitable absence of up-to-date, reliable technology evaluation 
sources makes this comparison exercise a highly exploratory, 
unstructured task. To address these problems, we have created a 
detailed feature taxonomy that enables rigorous comparison and 
evaluation of distributed database platforms. The taxonomy 
captures the major architectural characteristics of distributed 
databases, including data model and query capabilities. In this 
paper we present the major elements of the feature taxonomy, 
and demonstrate its utility by populating the taxonomy for nine 
different database technologies. We also briefly describe 
QuABaseBD, a knowledge base that we have built to support the 
population and querying of database features by software 
architects. QuABaseBD links the taxonomy to general quality 
attribute scenarios and design tactics for big data systems. This 
creates a unique, dynamic knowledge resource for architects 
building big data systems. 

Keywords—scalable software systems, big data, software 
architecture knowledge base, feature taxonomy 

I. INTRODUCTION 
There has been no industry in the history of engineering 

that exhibits the rapid rate of change we see in software 
technologies. By their very nature, complex software products 
can be created and evolved much more quickly than physical 
products, which require redesign, retooling and manufacturing 
[1]. In contrast, the barriers to software product evolution are 
no greater than incorporating new functionality in to code, 
testing, and releasing a new build for download on the Internet.  

For software engineers building modern applications, there 
exists a dizzying number of potential off-the-shelf components 
that can be used as building blocks for substantial parts of a 
solution [2]. This makes component selection, composition, 
and validation a complex software engineering task that has 
received considerable attention in the literature (e.g. [3], [4], 

[5], [6]). While there is rarely a single ‘right’ answer when 
selecting a complex component for use in an application, 
selection of inappropriate components can be costly, reduce 
downstream productivity due to extensive rework, and even 
lead to project cancelation [7]. 

A contemporary application domain where there is 
particular difficulty in component selection is that of massively 
scalable, big data systems [8]. The exponential growth of data 
in the last decade has fueled rapid innovation in a range of 
components, including distributed caches, middleware and 
databases. Internet-born organizations such as Google and 
Amazon are at the cutting edge of this revolution, collecting,  
storing, and analyzing  the largest data repositories ever 
constructed. Their pioneering efforts, for example [9] and [10], 
along with those of numerous other big data innovators, have 
created a variety of open source and commercial technologies 
for organizations to exploit in constructing massively scalable, 
highly available data repositories. 

This technological revolution has instigated a major shift in 
database platforms for building scalable systems. No longer are 
relational databases the de facto standard for building data 
repositories. Highly distributed, scalable “NoSQL” databases 
[11] have emerged, which eschew strictly-defined normalized 
data models, strong data consistency guarantees, and SQL 
queries. These features are replaced with schema-less data 
models, weak consistency guarantees, and proprietary APIs 
that expose the underlying data management mechanisms to 
the application programmer. Prominent examples of NoSQL 
databases include Cassandra, Riak, neo4j and MongoDB. 

NoSQL databases achieve scalability through horizontally 
distributing data. In this context, distributed databases have 
fundamental quality constraints, as defined by Brewer’s CAP 
Theorem [12]. When a network partition occurs (“P”- arbitrary 
message loss between nodes in the cluster), a system must trade 
consistency (“C” - all readers see the same data) against 
availability (“A” - every request receives a success/failure 
response).  

The implications of the CAP theorem are profound for 
architects. To achieve high levels of scalability and availability, 
distribution must be introduced in all system layers. 
Application designs must then be aware of data replicas, handle 
inconsistencies from conflicting replica updates, and continue 
degraded operation in spite of inevitable failures of processors, 
networks, and software. This leads to new and emerging design 
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principles, patterns and tactics based on established distributed 
systems theory, which must be adopted to successfully build 
scalable, big data systems [13].  

This confluence of rapidly evolving technologies and (re-) 
emerging design principles and patterns makes designing big 
data systems immensely challenging. Application architectures 
and design approaches must exploit the strengths of available 
components and compose these into deployable, extensible and 
scalable solutions.  

This is especially challenging at the data storage layer. The 
multitude of competing NoSQL database technologies creates a 
complex and rapidly evolving design space for an architect to 
navigate. Architects must carefully compare candidate database 
technologies and features and select platforms that can satisfy 
application quality and cost requirements. In the inevitable 
absence of up-to-date, unbiased technology evaluations, this 
comparison exercise is in practice a highly exploratory, 
unstructured task that uses an Internet search engine as the 
primary information gathering and assessment tool.  

In this paper we introduce a detailed feature taxonomy that 
can be used to systematically compare the capabilities of 
distributed database technologies. This taxonomy was derived 
from our experiences in evaluating databases for big data 
systems in a number of applications domains (e.g. [14]). The 
feature taxonomy describes both the core architectural 
mechanisms of distributed databases, and the major data access 
characteristics that pertain to the data architecture a given 
database supports. We describe our experience populating this 
taxonomy with the features of nine different databases to 
demonstrate its efficacy. We also describe a dynamic 
knowledge base we have built to semantically encode the 
feature taxonomy so that it can be queried and visualized.  

The major contributions of this paper are: 

• The first presentation of a detailed, software and data 
architecture-driven feature taxonomy for distributed 
database systems. 

• A demonstration of the efficacy of the taxonomy through its 
population with the features from nine different database 
technologies.  

• A description of the semantic encoding and representation 
of the feature taxonomy to support efficient knowledge 
capture, query and visualization.  

II. RELATED WORK 
Our work builds upon and extends established work in 

software architecture knowledge management [15]. Early 
research in this area includes Kruchten [16], which introduced 
an ontology describing architectural design decisions for 
software systems. The ontology can be used to capture project-
specific design decisions, their attributes, and relationships to 
create a graph of design decisions and their interdependencies. 
Our feature taxonomy also describes a graph of related design 
alternatives and relationships, but the knowledge relates to the 
class of distributed databases as opposed to a specific project or 
system. Hence, the knowledge has applicability to the broad 
class of big data software systems. 

Other research has focused on using knowledge models to 
capture project-specific architectural decisions [17] and 
annotate design artefacts using ontologies [18][19][20]. 
Ontologies for describing general architecture knowledge have 
also been proposed. These including defining limited 
vocabularies [21], formal definitions of architecture styles [22], 
and supporting reuse of architecture documentation [23]. 
However, the inherent complexity of these approaches has  
severely limited adoption in practice. 

Formal knowledge models for capturing architecture-
related decisions also exist, for example [24], [25], [26], [27], 
[28], and [29]. Shahin describes a conceptual framework for 
these approaches that demonstrates significant overlap between 
the proposed concepts [30]. Our representation of the feature 
taxonomy takes a conceptually similar approach in that it 
semantically codifies a collection of general capabilities of big 
data systems, allowing an architect to explore the conceptual 
design space.  

A primary use case for our knowledge base that 
semantically encodes the feature taxonomy is to provide 
decision support for evaluating alternative database 
technologies. Earlier work has demonstrated how a similar 
approach based on feature categorization of technology 
platforms can be effective in practice for middleware 
technology evaluation [4]. Our work extends this approach by 
reifying technology-specific knowledge as semantic 
relationships that enable querying of the knowledge to rapidly 
answer project-specific evaluation questions.  

III. FEATURE TAXONOMY 
Scalability in big data systems requires carefully 

harmonized data, software and deployment architectures [13]. 
In the data layer, scalability requires partitioning the data sets 
and their processing across multiple computing and storage 
nodes. This inherently creates a distributed software 
architecture in the data tier.  

Contemporary database technologies adopt a variety of 
approaches to achieve scalability. These approaches are 
primarily distinguished by the data model that a database 
supports and by the data distribution architecture it implements. 
Therefore, the selection of a specific database technology has a 
direct impact on the data and software architecture of an 
application.  

Our feature taxonomy for distributed databases reflects 
these influences directly. It represents features in three 
categories related directly to the data architecture – namely 
Data Model, Query Languages, and Consistency – and four 
categories related directly to the software architecture – namely 
Scalability, Data Distribution, Data Replication, and Security. 
We decomposed each of these feature categories into a 
collection of specific features. Each feature has a set of allowed 
values representing the spectrum of design decisions that are 
taken in distributed databases. Depending on the database, 
some features may be assigned one or more of these values to 
fully characterize the database’s capabilities.  

In the following subsections we describe these feature 
categories and the spectrum of design decisions that are 



represented in our feature taxonomy. Space precludes a 
detailed description of each features. Instead we briefly 
describe the major classes of features and their implications on 
both the data and software architecture.  

A. Data Model 
The data model supported by a distributed database dictates 

both how application data can be organized, and to a large 
extent, how it can be queried. Our taxonomy, shown in Table 1, 
captures these data architecture issues, organizing features in 
three broad groups: 

1. Data Organization: These features capture how a database 
platform enables data to be modeled, whether fixed 
schemas are required, and support for hierarchical data 
objects.  

2. Keys and Indexes: Flexibility in data object key definition, 
including support for secondary and composite keys, can 
greatly influence application performance, scalability and 
modifiability. This collection of features describes how 
any given database support key definition.  

3. Query Approaches: This collection of features describes 
the options available for querying a database, including 
key-based searching, text searching, and support for Map-
Reduce based aggregation queries.  

Table 1. Data Model Features 
Feature Allowed Values 

Data Model Column, Key-Value, Graph, Document, 
Object, Relational 

Fixed Schema Required, optional, none 
Opaque Data Objects Required, not required 
Hierarchical Data Objects Supported, not supported 
Automatic Primary Key 
Allocation 

Supported, not supported 

Composite Keys Supported, not supported 
Secondary Indexes Supported, not supported 
Query by Key Range Supported, not supported 
Query by Partial Key Supported, not supported 
Query by Non-Key Value 
(Scan) 

Supported, not supported 

Map Reduce API Builtin, integration with external 
framework, not supported 

Indexed Text Search Support in plugin (e.g. Solr), builtin 
proprietary, not supported 

B. Query Languages 
The query language features of a database directly affect 

application performance and scalability. For example, if a 
database does not return sorted result sets, the application itself 
must retrieve data from the database and perform the sort. For 
big data applications in which large results sets are common, 
this places a significant performance burden on an application, 
and uses resources (memory/CPU/network) that may be scarce 
under high loads.  

Our feature taxonomy captures the broad query language 
characteristics, such declarative or imperative styles and 
languages supported, and the major detailed features that 
impart quality concerns. Table 2 illustrates these features. Note 
that for some features, for example Languages Supported and 
Triggers, multiple values may be assigned to the same feature 

for a database. This is a common characteristic that is seen 
across all categories in feature taxonomy. 

Table 2. Query Language Features 
Feature Allowed Values 

API-Based Supported, Not Supported 
Declarative Supported, Not Supported 
REST/HTTP-based Supported, Not Supported 
Languages supported Java, C#, Python, C/C++, Perl, Ruby, Scala, 

Erlang, Javascript 
Cursor-based queries Supported, Not Supported 
JOIN queries Supported, Not Supported 
Complex data types Lists, maps, sets, nested structures, arrays, 

geospatial, none 
Key matching options Exact, partial match, wildcards, regular 

expressions 
Sorting of query results Ascending, descending, none 
Triggers Pre-commit, post-commit, none 
Expire data values Supported, Not Supported 

C. Consistency 
With the emergence of scalable database platforms, 

consistency has become a prominent quality of an application’s 
data architecture. Transactional consistency properties that are 
standard in relational databases are rarely supported in NoSQL 
databases. Instead, a variety of approaches are supported for 
both transactional and replica consistency. This inevitably 
places a burden on the application to adopt designs that 
maintain strong data consistency or operate correctly with 
weaker consistency. A common design denormalizes data 
records so that a set of dependent updates can be performed in 
a single database operation. While this approach ensures 
consistency in the absence of ACID transactional semantics, 
denormalization also leads to increased data sizes due to 
duplication, and increased processing in order to keep 
duplicates consistent.  

The features in Table 3 are grouped into those that support 
strong consistency, and those that support eventual (replica) 
consistency. Strong consistency features such as ACID and 
distributed transactions reduce application complexity at the 
cost of reduced scalability. Eventual consistency is a common 
alternative approach in scalable databases. Eventual 
consistency relies on storing replicas of every data object to 
distribute processing loads and provide high availability in the 
face of the database node failures. The taxonomy describes a 
range of features that constitute eventually consistent 
mechanisms, including conflict detection and resolution 
approaches.  

D. Scalability 
Evaluating qualities like performance and scalability in 

absolute terms require benchmarks and prototypes to establish 
empirical measures. However, the core architectural design 
decisions that underpin a database implementation greatly 
affect the scalability that an application can achieve. In our 
taxonomy, we capture some of these core scalability features, 
shown in Table 4. 

 



Table 3. Consistency Features 
Feature Allowed Values 

Object-level atomic updates Supported, Multi-Value Concurrency 
Control, conflicts allowed 

ACID transactions in a  
single database 

Supported, lightweight transactions (e.g. 
test and set), not supported 

Distributed ACID 
transactions 

Supported, not supported 

Durable writes Supported, not supported 
Quorum Reads/Writes 
(replica consistency) 

In client API, in database configuration, in 
the datacenter configuration, not supported 

Specify number of replicas 
to write to 

In client API, in database configuration, not 
supported, not applicable – master-slave 

Behavior when specified 
number or replica writes 
fails 

Rollback at all replicas, No rollback, error 
returned, hinted handoffs, not supported 

Writes configured to never 
fail 

Supported, not supported 

Specify number of replicas 
to read from 

In client API, in database configuration, not 
supported, not applicable – master-slave 

Read from master replica 
only 

Not supported, in the client API, not 
applicable – peer-to-peer 

Object level timestamps to 
detect conflicts 

Supported, not applicable (single threaded), 
not applicable (master slave), not supported 

 
Table 4. Scalability Features 

Feature Allowed Values 
Scalable distribution 
architecture 

Replicate entire database only; horizontal 
data partitioning; horizontal data 
partitioning and replication 

Scaling out – adding data 
storage capacity 

Automatic data rebalancing; manual 
database rebalancing; not applicable (single 
server only) 

Request load balancing HTTP-based load balancer required; client 
requests balanced across any coordinator; 
fixed connection to a request coordinator 

Granularity of write locks Locks on data object only; Table level 
locks; database level locks; no locks (single 
threaded); no locks (optimistic concurrency 
control); no locks (conflicts allowed) 

Scalable request processing 
architecture 

Fully distributed – any node can act as a 
coordinator; centralized coordinator but can 
be replicated; centralized coordinator (no 
replication); requires external oad balancer 

Horizontal scaling spreads a data set across multiple nodes. 
In some databases, it is only possible to replicate complete 
copies of a database onto multiple nodes, which restricts 
scalability to the capacity of a single node - this is scaling up. 
Other databases support horizontal partitions, or sharding, to 
scale data on to multiple nodes.  

Another key determinant of scalability is the approach to 
distributing client requests across database nodes. Bottlenecks 
in the request processing path for reads and writes can rapidly 
become inhibitors of scalability in a big data system. These 
bottlenecks are typically request or transaction coordinators 
that cannot be distributed and replicated, or processes that store 
configuration state that must be accessed frequently during 
request processing. 

E. Data Distribution 
There are a number of software architecture alternatives 

that a database can adopt to achieve data distribution. These 
alternatives can greatly affect the quality attributes of the 
resulting system. To this end, the features in this category 

capture how a given database coordinates access to data that is 
distributed over deployment configurations ranging from single 
clusters to multiple geographically distributed data centers, 
shown in Table 5. 

The mechanisms used to locate data and return results to 
requesting clients are an important aspect of distributed data 
access that affects performance, availability and scalability. 
Some databases provide a central coordinator that handles all 
requests and passes them on to other nodes where the data is 
located for processing. A more scalable solution is provided by 
databases that allow any database node to accept a request and 
act as the request coordinator. 

Table 5. Data Distribution 
Feature Allowed Values 

Data distribution 
architecture 

Single database only; master-single slave; 
master-multiple slaves; multimaster 

Data distribution method User specified shard key; assigned key 
ranges to nodes; consistent hashing; not 
applicable (single server only) 

Automatic data rebalancing Failure triggered; new storage triggered; 
scheduled rebalancing; manual rebalancing; 
no applicable (single server only) 

Physical data distribution Single cluster; rack-aware on single cluster; 
multiple co-located clusters; multiple data 
centers 

Distributed query 
architecture 

Centralized process for key lookup; 
distributed process for key lookup;  
Direct replica connection only 

Queries using non-shard key 
values 

Secondary indexes; non-indexed (scan); not 
supported 

Merging results from 
multiple shards 

Random order; sorted order; paged from 
server; not supported 

F. Data Replication 
Data replication is necessary to achieve high availability in 

big data systems. This feature category is shown in Table 6. 
Replication can also enhance performance and scalability by 
distributing database read and write requests across replicas, 
with the inevitable trade-off of maintaining replica consistency. 
All databases that support replication adopt either a master-
slave or peer-to-peer (multi-master) architecture, and typically 
allow a configurable number of replicas that can be 
geographically distributed across data centers.  

Replication introduces the requirement on a database to 
handle replica failures. Various mechanisms, ranging from 
fully automated to administrative, are seen across database for 
replica failure and recovery. Recovery is complex, as it 
requires a replica to ‘catch up’ from its failed state and become 
a true replica of the current database state. This can be done by 
replaying transaction logs, or by simply copying the current 
state to the recovered replica. 

G. Security 
Security is necessary in the data tier of an application to 

ensure data integrity and prevent unauthorized access. This 
feature category is shown in Table 7. Our taxonomy captures 
the approaches supported by a database for authentication, 
which is often a key factor determining how a data platform 
can be integrated into an existing security domain.  We also 
capture features such as roles that greatly ease the overheads 
and complexity of administering database security, and support 



for encryption – an important feature for applications requiring 
the highest levels of data security.  

Table 6. Data Replication Features 
Feature Allowed Values 

Replication Architecture Master-slave; peer-to-peer 
Replication for backup Supported; not supported 
Replication across data 
centers 

Supported by data center aware features; 
Supported by standard replication 
mechanisms; Enterprise edition only 

Replica writes To master replica only; to any replica; to 
multiple replicas; to specified replica 
(configurable) 

Replica reads from master replica only; from any replica; 
from multiple replicas; from specified 
replica (configurable) 

Read repair Per query; background; not applicable 
Automatic Replica Failure 
Detection 

Supported; not supported 

Automatic Failover Supported; not supported 
Automatic new master 
election after failure 

Supported; not supported; not applicable 

Replica recovery and 
synchronization 

Performed by administrator; supported 
automatically; not supported 

 
Table 7. Security Features 

Feature Allowed Values 
Client authentication Custom user/password; X509; LDAP; 

Kerberos; HTTPS 
Server authentication Shared keyfile; server credentials 
Credential store In database; external file 
Role-based security Supported; not supported 
Security role options Multiple roles per user; role inheritance; 

default roles; custom roles; not supported 
Scope of rules Cluster; database; collection; object; field 
Database encryption Supported; not supported 
Logging Configurable event logging; configurable 

log flush conditions; default logging only 

IV. KNOWLEDGE BASE OVERVIEW 
This section describes how we instantiated and populated 

the feature taxonomy in a knowledge base that we call Quality 
Attributes at Scale Knowledge Base, or QuABaseBD 
(pronounced “k-base”). 

QuABaseBD is a linked collection of computer science and 
software engineering knowledge created specifically for 
designing big data systems with NoSQL databases. As depicted 
in Figure 1, QuABaseBD is presented to a user through a Web-
based wiki interface. QuABaseBD is built upon the Semantic 
MediaWiki (SMW) platform (https://semantic-mediawiki.org/), 
which adds dynamic, semantic capabilities to the base 
MediaWiki implementation (as used, for example, for 
Wikipedia).  

In contrast to a typical wiki such as Wikipedia, the pages in 
QuABaseBD are dynamically generated from information that 
users enter into a variety of structured forms. This significantly 
simplifies content authoring for QuABaseBD and ensures 
internal consistency, as newly-added content is automatically 
included in summary pages and query results without needing 
to manually add links. Form-based data entry structures 
knowledge capture when populating the knowledge base, 
which ensures that the new content adheres to the underlying 
knowledge model. Hence the dynamic, structured nature of the 

QuABaseBD ensures it can consistently capture and render 
knowledge useful for software architects exploring the design 
space for big data systems. 

QuABaseBD exploits these dynamic, semantic capabilities 
to implement a model that represents fundamental software 
architecture design knowledge for building big data systems. 
The initial version of QuABaseBD populates this knowledge 
model specifically for designing the data layer of an 
application.  

QuABaseBD links two distinct areas of knowledge through 
an underlying semantic model. These areas are: 

1. Software design principles for big data systems: 
Knowledge pertaining to specific quality attribute 
scenarios and design tactics for big data systems. 

2. Database feature taxonomy: Knowledge pertaining to 
the specific capabilities of NoSQL and NewSQL databases 
to support database evaluation and comparison, as 
described in the previous section. 

 
In the following, we describe how we link these two areas 

in the QuABaseBD knowledge model, and how we use the 
features of the SMW platform to populate and query the feature 
taxonomy. 

 

Figure 1. Conceptual Architecture of QuABaseBD 

A. Semantic Knowledge Model 
The SMW platform supports semantic annotation of 

information as Categories and Properties. These annotations 
can be applied in an ad hoc manner as markup in the wikitext 
allowing the semantic structure to emerge from the contributed 
content. In contrast, QuABaseBD takes a structured approach 
to knowledge representation, as discussed above. All content is 
created using a form and rendered using a template, and the set 
of forms and templates embodies the structure of the semantic 
knowledge model. 

The knowledge model is split into two main sections. One 
section represents software architecture concepts related to 
quality attributes, quality attribute scenarios, and architecture 
tactics. This section of the knowledge model is not intended to 
be a complete representation of general software design 
knowledge, but instead, it represents a growing collection of 
concepts and properties needed to reason about big data 



systems design and database technology selection. The 
purposes of this section of the model are to support the 
definition of architecturally significant requirements, to 
identify the quality attribute tradeoffs that are inherent in 
distributed data-intensive systems, and to describe design 
tactics to achieve particular architecture requirements. The 
second section of the knowledge model represents the feature 
taxonomy described above.  

The novelty of the QuABaseBD knowledge model is the 
linkage between the two sections through the relationship of an 
instance of a tactic to the instances of the features of a 
particular database that implement that tactic. This is shown in 
the extract of the knowledge model shown in Figure 2. 

Here we see that a Quality Attribute is represented using a 
General Scenario. The general scenario includes only those 
stimuli, responses, and response measures that are relevant in 
big data systems, in contrast to the abstract general scenarios 
presented by Bass and colleagues [31]. A general scenario is a 
prototype that generates many Quality Attribute Scenarios, 
each of which combines a stimulus and response in the context 
of a big data system. A Quality Attribute Scenario covers a 
specific situation, and so we can identify the Tactics that can be 
employed to achieve the desired scenario response. Tactics 
represent tradeoffs – each tactic promotes at least one quality 
attribute, and may inhibit other quality attributes. Although not 
represented in Figure 2, the knowledge model also includes 
“anti-tactics”, representing design approaches that prevent the 
desired response from being achieved. 

Key

Quality Attribute

General
Scenario

Quality Attribute
Scenario

Tactic

Database

Feature
Category

Feature

Attributes

Concept

1 - N Relationship

Promotes Inhibits

Is
Supported

By
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Figure 2. Extract from QuABaseBD Knowledge Model  

Tactics also represent specific design decisions that can be 
realized by a Database implementation, so we can say that a 
database supports a collection of tactics. This support is 
provided by one or more Features, which are grouped into 
Feature Categories. Finally, a feature has one or more 
Attributes, which represent the allowable values for the feature.  

This relationship between features and tactics allows an 
architect to reason architecture qualities. For example, an 
architect may reason about the need for certain database 
features in order to achieve a particular system quality, or how 
different implementations of a feature in different databases 
will affect system qualities.  

An example of how QuABaseBD uses a template to link 
tactics to database implementations is shown in Figure 3. This 
illustrates the feature page for the Read Repair feature, which 
is in the feature category Replication Features. The related 
tactics that are supported by this feature are selected during the 
content creation process, and the table showing which 
databases implement the feature is generated dynamically by 
querying the knowledge base content. 

 

Figure 3. Linking from Tactics to Implementations and 
Features 

B. QuABaseBD Implementation of Feature Taxonomy 
From the main QuABaseBD page, users can choose to 

explore the knowledge base content for specific database 
technologies. Figure 4 shows an extract from the main database 
page. This table is a dynamically generated list (the result of 
the SMW query shown in Figure 5) of the databases for which 
QuABaseBD currently provides information.  

 

Figure 4. QuABaseBD Database Knowledge 



{{#ask: [[Category:Database]] 
|intro=Select any of the database below to get 
information on their features and the tactics they 
support 
| mainlabel=Database 
| ?Has DB Model=Data Model 
| sort=Has DB Model 
| order=asc 
}} 

Figure 5. Query to List Databases and Data Model Types 

When a user navigates to the content for a specific 
database, for example Riak, they see a page that gives a brief 
overview of the database and a table listing the feature 
categories from the feature taxonomy, as shown in Figure 6.  

Knowledge creators can edit the values for the feature 
taxonomy for each database. As discussed above, all content 
creation is done using SMW forms – clicking on an ‘Edit’ link 
displays a form for the associated feature category, as shown in 
Figure 7 for the data replication category.The forms render the 
elements of the feature taxonomy as fields organized in tabs, 
along with a valid set of values that a knowledge creator can 
select from for each feature. Using forms in this manner, the 
QuABaseBD implementation ensures a consistent set of values 
for each feature, thus greatly facilitating ease of comparison 
across databases. 

 

Figure 6. QuABaseBD Knowledge for Riak 

 

Figure 7. Populating the QuABaseBD Feature Taxonomy 
for Riak Replication 

When a form is saved by a knowledge creator, an 
associated SMW template performs two actions: 

1. It associates the selected feature values with a semantic 
property for each feature, creating a collection of RDF 
triples with the general form {Feature, Has Value, Value} 
to populate the semantic feature taxonomy 

2. It generates a wiki page for knowledge consumers by 
substituting the selected feature values into a text template 
that describes each feature and the associated value for 
each database.  

An example of the resulting generated wiki page is shown 
in Figure 8. Therefore, to a knowledge consumer, the 
mechanics of selecting alternate feature values is completely 
hidden. They simply see a description of each feature and how 
it is realized in the associated database.  

A major advantage of associating each feature with a 
semantic property is that it facilitates fine grain searching 
across the different features for each database. Figure 9 
illustrates the search facilities available to users for each feature 
category. By default, if no specific feature values are selected 
in the query form (top left), then all the databases in the 
QuABaseBD that have a completed feature page for that 
category are displayed (bottom right). The generated table 
facilitates a direct comparison of the databases in the 
QuABaseBD. The user can then choose specific values in the 
query form for the various features they are interested in and 
generate customized result sets to answer their specific 
questions.. 



  

Figure 8. Template-generated Wiki Page for Riak Replication 

 

Figure 9. Querying the Database Features



V. DEMONSTRATING FEATURE  TAXONOMY EFFICACY 
The feature taxonomy and the initial implementation of 

QuABaseBD were co-developed during an evaluation of four 
NoSQL databases, namely MongoDB, Cassandra, Neo4j and 
Riak [14]. During this project, QuABaseBD was populated 
with information about those databases by the authors of this 
paper. The feature taxonomy and the allowed values were 
based on the capabilities of the four databases. As each of these 
databases represented a different NoSQL data model, we 
expected that the feature taxonomy we developed would be 
sufficiently general to facilitate differentiation amongst a much 
larger collection of technologies. 

To assess the efficacy of the feature taxonomy, we further 
populated QuABaseBD with information about five other 
databases: Accumulo, Hbase, CouchDB, FoundationDB, and 
VoltDB. Graduate students helped perform this content 
curation1: Each contributor located and reviewed the product 
documentation for the database published on the Internet by the 
vendor or open source developer, and used the QuABaseBD 
SMW forms to enter the relevant information to populate the 
feature taxonomy.  

 

Figure 10. Clustering of Implementations for the Load 
Balancing Feature 

Throughout this curation process, we observed no 
additional features were needed to describe the functionality 
delivered by any of these databases, and curators were able to 
map all product features to one or more of the taxonomy 
features. For several features, we incorporated new “allowed 
values” to more precisely capture a particular database’s 
capabilities. For example, CouchDB eschews object locking on 

                                                             
1 http://en.wikipedia.org/wiki/Content_curation 

updates in favor of Multi-Version Concurrency Control 
(MVCC). This approach was not supported in our initial set of 
databases, and hence we added MVCC as an allowed value to 
for the Object Level Atomic Updates feature. Additional 
allowed values for a number of features were also necessary to 
describe the capabilities of two so-called ‘NewSQL’ databases 
that were incorporated into QuABaseBD, namely VoltDB and 
FoundationDB. These databases are distributed, scalable 
implementations of relational databases, supporting large 
subsets of the standard SQL query language. Encouragingly, 
the feature taxonomy was sufficiently rich to enable us to 
capture the capabilities of these NewSQL databases in 
QuABaseBD.  

Figure 10 is a simple visualization of the populated feature 
taxonomy that we can generate by querying QuABaseBD. It 
shows how each of the nine databases in the knowledge base 
relate to a value for the Load Balancing feature in the 
Scalability category. This visualization clearly shows how the 
databases cluster around the different feature values. Being 
able to convey such information visually is important as it 
makes it straightforward for architects to focus on features of 
interest and see how databases compare. As the number of 
databases in QuABaseBD grows, we will develop further 
visualizations to help convey the information is a concise and 
informative manner.  

VI. FURTHER WORK AND CONCLUSIONS 
We are currently working towards finalizing QuABaseBD 

for public release. To this end we are testing the knowledge 
base functionality, and validating with experts on each 
database that our curated values for the database features are 
valid. We believe that as a curated scientific knowledge base, 
there are high expectations that the content in QuABaseBD is 
trustworthy at all times. To this end, we are working to design 
a systematic curation process where a small cohort of experts 
will be responsible for changes to the content. We anticipate 
that visitors to the knowledge base will be able to suggest 
changes through associated comments pages, and these 
proposals will be assessed for inclusion by the curators.  

The SMW platform has provided a usable interface for 
these architects to derive answers to questions in a short 
amount of time. The platform’s semantic metamodel, 
combined with the forms for content entry and templates for 
content rendering, allowed us to represent a novel domain 
knowledge model for big data architecture and technology in a 
form (a wiki) that users are familiar with. 

After deployment, we will continue to expand the 
QuABaseBD content, and have identified several areas for 
future work. Manual creation and maintenance of content is 
inefficient, as the scope of the content is expanded to cover 
more of the database product landscape. Automation of these 
tasks is therefore needed, using technology such as machine 
learning to extract content from product documentation. 

The terminology used in the database feature taxonomy 
needs further study. We chose terms that are abstract and 
general, rather than adopting implementation-specific terms. In 
some cases, adding alternative terminology for feature values 
may increase usability. We also anticipate expanding and 



restructuring the taxonomy as we receive feedback from the 
community.  

We hope that QuABaseDB can become an enduring 
resource to support the design of big data systems. We also 
hope it will demonstrate the potential of curated, dynamic 
knowledge bases as sources of highly reliable scientific 
knowledge, as well as the basis for a next generation of 
software engineering decision support tools. 
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